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Abstract

The paper presents a new approach to reconstruct the distributed dynamic loads on an Euler beam from the beam

response. The approach is based on a mode-selection method and an idea of consistent spatial expression for the

distributed dynamic loads, and is supported by error estimation. The idea of the optimal range of frequency and spatial

modes for load reconstruction is proposed and verified by numerical simulations. To cope with the tough problem of

identifying the dynamic loads near a fixed boundary, the concept of consistent spatial expression for the dynamic loads is

put forward, and the Legendre polynomials are used as the consistent orthogonal base functions to describe the distributed

dynamic loads. The numerical simulations show that the reconstruction accuracy near the fixed boundaries can be greatly

enhanced.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of dynamic loads on a structure is of great practical interest in aerospace engineering,
mechanical engineering, civil engineering and so on because a prior knowledge of the dynamic loads is
essential for the design, analysis and evaluation of the structure, while the direct measurements of dynamic
loads are often not feasible in practice. The past decade has witnessed numerous studies of identifying the
dynamic loads on a system of multiple degrees of freedom [1–4], the moving loads on a bridge [5,6], and
impulsive load or multi-point load on a continuum [7–9]. The identification of spatially distributed dynamic
loads on a continuum is relatively new [10–14]. For instance, Liu and Shepard [11] studied the reconstruction
of harmonic force applied on a beam, while Granger and Perotin [14] investigated the identification of the
random excitation on a beam. In these two studies, they introduced and used similar but different ideas of
modified modal expression for beam dynamics. Pezerat and Guyader [13] studied the reconstruction of
harmonic excitation acting on a rectangular plate, and Djamaa et al. [10] studied the load on a thin cylindrical
shell. In both studies, they used the model of finite elements to describe the plate and the shell. Furthermore,
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Sehlstedt [12] investigated a seemingly different problem to reconstruct the boundary traction on a constrained
structure.

The reconstruction of distributed dynamic loads on a continuum is a complex inverse problem with inherent
ill-posedness. However, it is not clear whether the ill-posedness results from physics or mathematics. In
engineering practice, to reconstruct the distributed dynamic loads on a continuum is an expansive mapping
process of deducing continuous integrated load information from discrete parts of response information,
which makes the problem so involved that many aspects have to be dealt with. In the studies mentioned above
and some others, much attention was paid to the complicated technical problems in mathematics, especially in
the ill-posedness and regularization methods [15–22], while less consideration was put to the physical nature of
the problem.

This paper is mainly concerned with some physical aspects of the identification of distributed dynamic
loads. For example, attention will be paid to whether or not the distributed dynamic loads on a continuum can
be reconstructed integrally from the response data by inverse inference. A reasonable extension of this
question is that the reconstruction of distributed dynamic loads can be made only in part. From the viewpoint
of the forward problem from the dynamic load to the dynamic response, the continuum acts as a transducer
with the inherent physical property of smoothness. That is, the continuum behaves like an inverse transducer
that enlarges the unevenness in response information. Thus, the continuum as an inverse transducer is
naturally ill-posed in physics, instead of in mathematics only. In addition, attention will be paid to the
following questions. Will the above fact suggest that the reconstruction of distributed dynamic loads on a
continuum can be solved only in part? To what degree can the result of the reconstruction be controlled? Will
it be different when a strategy intending in advance to obtain only some limited range of the load information
is adopted?

In practice, the measurements of dynamic response are often not enough for the reconstruction of dynamic
loads. Consequently, many studies have focused on the additional information. However, it does not seem an
efficient policy. In this study, an idea of drawing the inner relation between the temporal and spatial
information from the measurements will be considered so as to establish a strong linkage between the
temporal response data and the spatial response data, since they are through the same system and are parts of
the integrated response information.

For simplicity, this study will focus on the reconstruction of the dynamic loads on an undamped Euler beam
so as to clarify some phenomena in the inverse problem of reconstructing distributed dynamic loads on a
continuum from discrete response data. The rest of the paper is organized as follows. In Section 2, a concept of
‘‘scale effect’’ is first proposed to reveal the relation between the temporal and spatial information in the beam
response, and then it is applied to the ‘‘mode selection’’ approach to determine the appropriate range for the
load reconstruction with acceptable accuracy. In the previous studies of reconstructing the dynamic loads on a
beam [11,14], the modified modal functions were employed to describe the distributed dynamic loads. With
regard to simply supported boundary conditions, the modal functions, including the modified modal
functions, gradually tend to be zero near the fixed boundary and conflict with the dynamic loads not vanishing
near the fixed boundary. In Section 3, therefore, a concept of ‘‘consistent spatial expression for distributed
dynamic loads’’ is suggested to cope with the boundary problem. In Section 4, several numerical simulations
will be given to demonstrate the theoretical results in Sections 2 and 3. Finally, some concluding remarks are
made in Section 5.

2. Mode selection

The dynamic response of a uniform undamped Euler beam yields a dimensionless partial differential
equation as follows:

ðk1LÞ4

4p2
q2w̄ðx̄; t̄Þ

qt̄2
þ

q4w̄ðx̄; t̄Þ

qx̄4
¼ f̄ ðx̄; t̄Þ, (1)

where x̄ � x=L is the dimensionless spatial variable scaled by the length L of beam, t̄ � t=T1 the dimensionless
time scaled by T1 � 2p=o1; o1 � k21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
, w̄ � w=L the dimensionless translational displacement, f̄ �

L3f =ðEIÞ the dimensionless external transverse excitation, k1 the circular wavenumber of the first modal
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shape, r the density of beam material, E the Young’s modulus of beam material, A the area of cross section of
beam, and I the second moment of the area, respectively.

With the use of modal transformation w̄ðx̄; t̄Þ ¼
P1

m¼1W mðx̄Þqmðt̄Þ, the mth modal response corresponding
to Eq. (1) becomes

€qmðt̄Þ þ ō2
mqmðt̄Þ ¼

4p2

ðk1LÞ
4

f̄ mðtÞ, (2)

where the dot represents the derivative with respect to the dimensionless time t̄, qmðt̄Þ is the modal coordinate,
f̄ mðt̄Þ �

R 1
0 W mðx̄Þf̄ ðx̄; t̄Þdx̄ the general force, and W mðx̄Þ the mode shape, respectively.

If the transverse excitation is harmonic in the time domain and proportional to the jth mode shape in the
spatial domain, namely

f̄ ðx̄; t̄Þ ¼ cW jðx̄Þe
iōt̄, (3)

where c is a positive real constant, the general force and the corresponding steady-state response of the mth
mode read

f̄ mðt̄Þ ¼ cdjme
iōt̄, (4)

qmðt̄Þ ¼ c
4p2

ðk1LÞ4
djm

1

ō2
m � ō2

eiōt̄; €qmðt̄Þ ¼ c
4p2

ðk1LÞ4
djm

1

1� ðōm=ōÞ
2
eiōt̄, (5)

where djm is the Kronecker delta.
To check the scale effect of the variance of both mode order m and excitation frequency ō, it is useful to

introduce two factors as follows:

SFw̄ �
1

ō2
m � ō2

; SFā �
1

1� ðōm=ōÞ
2
. (6)

With the help of SFw̄ and SFā, the translational displacement and acceleration of the steady-state response can
be expressed as

w̄ðx̄; t̄Þ ¼ c
4p2

ðk1LÞ4
SFw̄W jðx̄Þe

iōt̄; āðx̄; t̄Þ ¼ c
4p2

ðk1LÞ
4
SFāW jðx̄Þe

iōt̄. (7)

For a simply supported Euler beam, (k1L)
4/(4p2) ¼ p2/4, and the dimensionless circular wavenumber, circular

frequency and modal shape of the mth mode are k̄m ¼ mp; ōm ¼ 2m2p, and W mðx̄Þ ¼
ffiffiffi
2
p

sinðk̄mx̄Þ,
respectively. For the excitation frequency ō between two natural frequencies ōk and ōkþ1, where ō0 is defined
as ō0 � 0, let ō ¼ ōk þ Dōk and Dōk40. Then, it is easy to recast Eq. (6) as

SFw̄ ¼
1

4p2
1

ðk2
þ bÞ2

1

g2 � 1
; SFā ¼

1

1� g2
, (8)

where

b �
Dōk

ō1
; g �

ōm

ō
¼

m2

k2
þ b

; 0obo2k þ 1. (9)

Eq. (8) indicates that the scale effect mainly comes from cs�1/|1�g
2|, gA(0,N), which is shown in Fig. 1.

Now it is clear that an undamped Euler beam is a low-pass filter in the frequency domain and the modal
domain, as may be observed in Eqs. (8) and (9) from the fact that SFw̄ ! 0 when k-N but m is fixed, and
that SFw̄ ! 0 and SFā ! 0 when m-N but k and b are fixed. Furthermore, the steady-state response greatly
depends on the difference between the excitation frequency and the natural frequencies corresponding to the
modal components included in the spatial expression of the excitation. For example, given the harmonic
excitation distributed proportionally to a mode shape in the spatial domain, the beam response becomes
remarkable if the excitation frequency is close to the natural frequency corresponding to the mode shape.
Otherwise, the beam response is imperceptible.
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The reconstruction of distributed dynamic loads on an Euler beam is inherently a process of partial
identification when any truncated modal expression is used to describe the beam response. This assertion also
holds true for the reconstruction of distributed dynamic loads on any continuum. Hence, the difficulty in
reconstructing the dynamic load of high frequency has been well acknowledged. Furthermore, the
reconstruction of distributed dynamic loads can only be made in part since the spatial modal components
of high wavenumbers have to be truncated according to the above discussion. The above facts lead to a
hypothesis for the reconstruction of distributed dynamic loads as follows. Only the distributed dynamic loads
of a certain range of frequency and spatial modes could be reconstructed from the response data, and there is
an optimal range for the reconstruction when a particular level of sensitivity and noise in response
measurement is given for a specific beam. Furthermore, the coincidence is that this is analogous to the
function of animal’s ears, which means different animals have different ranges of sound perception in nature.

Based on this hypothesis, a method named ‘‘mode selection’’ is proposed based on the concept of ‘‘scale
factor’’ in Eq. (6) to determine an appropriate range for load reconstruction. When the main frequencies of
loads are obtained from the response, the scale factor SFw̄ or SFā of every mode can be determined, and only
those modes, whose corresponding scale factors divided by the maximum scale factor are larger than a
threshold, will be chosen for load reconstruction. Section 4 will demonstrate how to determine such a
threshold through empirical data in simulations.

This approach seems similar to the regularization method of discarding smaller singular values, but they are
not the same concept in fact. When the regularization method is tried to be applied to the process of mode
selection, the results are not so good. Furthermore, though the scale effect seems apparent in the forward
problem and causes no trouble, it is not the case in the inverse process. This scale effect results in ill-posedness
and irreversibility in the inverse problem.

Section 4 gives some numerical simulations to verify the hypothesis. It is hard to depict the cases of the
failure to reconstruct the spatial modal components of high wavenumber. However, the numerical results in
Section 4 through case studies 1 and 2 show that the reconstruction accuracy is enhanced when an appropriate
range is selected. The results there indicate that it is very important to determine an appropriate range of
frequency and spatial modes in the load reconstruction, and that the accuracy of reconstructed load greatly
decreases if the range is too broad.
3. Reconstruction of distributed dynamic loads and error analysis

Based on the hypothesis stated in Section 2, an improved theory with the help of ‘‘mode selection’’ will be
developed in Section 3.1 to reconstruct the distributed dynamic loads on an Euler beam. Furthermore, the
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theory, combined with the ‘‘consistent spatial expression’’ for distributed dynamic loads, is used to cope with
the tough problem of identifying the distributed dynamic loads near any fixed boundary in Section 3.2. Later,
the error evolution of the theory is discussed at length in Section 3.3.

3.1. Theory of the reconstruction of distributed dynamic loads

This subsection deals with the reconstruction of the distributed dynamic loads on a uniform undamped
Euler beam governed by Eq. (1). If the dynamic load comprises Np frequency components in the time domain,
it can be expressed as

f̄ ðx̄; t̄Þ ¼
XNp

r¼1

F rðx̄Þe
iō�r t̄. (10)

The general force and the corresponding steady-state response of the mth mode read

f̄ mðt̄Þ ¼
XNp

r¼1

Z 1

0

W mðx̄ÞF rðx̄Þdx̄eiō
�
r t̄ (11)

qmðt̄Þ ¼
4p2

ðk1LÞ
4

XNp

r¼1

1

ō2
m � ō�2r

Z 1

0

W mðx̄ÞFrðx̄Þdx̄eiō
�
r t̄, (12a)

€qmðt̄Þ ¼
4p2

ðk1LÞ
4

XNp

r¼1

1

1� ðōm=ō�r Þ
2

Z 1

0

W mðx̄ÞFrðx̄Þdx̄eiō
�
r t̄ (12b)

There follows the translational displacement and acceleration of the steady-state response:

w̄ðx̄; t̄Þ ¼
X1
m¼1

W mðx̄Þqmðt̄Þ ¼
4p2

ðk1LÞ4

X1
m¼1

XNp

r¼1

1

ō2
m � ō�2r

Z 1

0

W mðx̄ÞF rðx̄Þdx̄Wmðx̄Þe
iō�r t̄; (13a)

āðx̄; t̄Þ ¼
X1
m¼1

W mðx̄Þ €qmðt̄Þ ¼
4p2

ðk1LÞ
4

X1
m¼1

XNp

r¼1

1

1� ðōm=ō�r Þ
2

Z 1

0

W mðx̄ÞFrðx̄Þdx̄W mðx̄Þe
iō�r t̄. (13b)

As in Eq. (6), two factors can be introduced as follows:

SFw̄ðm; rÞ ¼
1

ō2
m � ō�2r

; SFāðm; rÞ ¼
1

1� ðōm=ō�r Þ
2
. (14)

To separate the spatial and temporal information from the beam response, it is useful to introduce several
abbreviation notations as follows:

c̄mr ¼

Z 1

0

W mðx̄ÞFrðx̄Þdx̄, (15)

ḡw̄
r ðx̄Þ ¼

X1
m¼1

c̄mrSFw̄ðm; rÞW mðx̄Þ; ḡā
r ðx̄Þ ¼

X1
m¼1

c̄mrSFāðm; rÞW mðx̄Þ. (16)

With the help of the above notations, it is easy to recast Eq. (13) as

w̄ðx̄; t̄Þ ¼
4p2

ðk1LÞ4

XNp

r¼1

ḡw̄
r ðx̄Þe

iō�r t̄; āðx̄; t̄Þ ¼
4p2

ðk1LÞ4

XNp

r¼1

ḡā
r ðx̄Þe

iō�r t̄. (17)

The reconstruction of the distributed dynamic loads from the beam response begins with the measured
translational displacements denoted as

w̄ðx̄i; t̄nÞ; i ¼ 1; . . . ;Nm; n ¼ 1; . . . ;NT , (18)
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where Nm is the number of measurement locations along the beam and NT the number of data in time
dimension. From a simple frequency analysis, one reaches the dominate circular frequencies and the
corresponding amplitudes contained in the response data denoted by

ō�r ; r ¼ 1; . . . ;Np; ḡw̄
r ðxiÞ; r ¼ 1; . . . ;Np; i ¼ 1; . . . ;Nm, (19)

where Np is the number of dominate frequencies, and ō�r is sorted so that ō�1o � � �oō�Np
. The amplitude

corresponding to the rth dominate circular frequency ō�r yields

ḡw̄
r ðx̄iÞ ¼

X1
m¼1

c̄mrSFw̄ðm; rÞW mðx̄iÞ; i ¼ 1; . . . ;Nm. (20)

Now that the sets of ō�r and ḡw̄
r ðx̄iÞ are available, the scale factors SFw̄ and SFā can be calculated, the

limitation of the magnitude level of c̄mr can be estimated, and the modes can be selected and denoted as a set
Bm. If the number of modes in Bm is M, Eq. (20) can practically be given as a truncated form as follows:

ḡw̄
r ðx̄iÞ ¼

X
m2Bm

c̄mrSFw̄ðm; rÞW mðx̄iÞ; i ¼ 1; . . . ;Nm. (21)

Eq. (21) may be an ill-posed problem for the solution of c̄mr. Consequently, the pseudo-inverse method or
regularization approach, such as Tikhonov regularization [16,20,23], should be employed. When c̄mr is solved
from Eq. (21), the remaining problem is solving Eq. (15) for F rðx̄Þ. Eq. (15) can be regarded as a mapping A

from the space of all kinds of Frðx̄Þ, denoted as U, to the space of all W mðx̄Þ, denoted as V. That is, A:U-V.
Hence, Eq. (15) can be solved for Frðx̄Þ by using the projection method as below [24].

Let UN be an N-dimensional subspace of U with a series of orthogonal base functions fjnðx̄Þg with respect to
a given inner product, VM be an M-dimensional subspace of V with a series of orthogonal base functions
fW mðx̄Þg having the inner product defined by hW i;W ji ¼

R 1
0 W iðx̄ÞW jðx̄Þdx̄, and the following relations hold:

UN � UNþ1 � � � � � U ; VM � V Mþ1 � � � � � V . (22)

The definition of a projection operator QM:V-VM enables one to establish an approximate projection

QMAjUN
: UN ! VM . (23)

Therefore, Eq. (15) as an approximate projection (23) can easily be recast as the following matrix equation:

Ā a ¼ c̄, (24)

where Ā � ½
R 1
0 W mðx̄Þjnðx̄Þdx̄�M�N , c̄ � fc̄mrgM�1, and a�{an}N� 1 are the coefficients in expression F rðx̄Þ ¼P

jn2Un
anjnðx̄Þ: Solving Eq. (24) for a gives Frðx̄Þ through the following truncated expansion:

F rðx̄Þ ¼
X
jn2Un

anjnðx̄Þ. (25)

3.2. Consistent spatial expression for distributed dynamic loads

In previous studies [11,14], as mentioned in the introduction, the modified modal functions were employed
as base functions in order to describe the distributed dynamic loads on a structure as a truncated linear
combination of base functions. Such a description, however, may conflict with the actual dynamic loads near
the fixed boundaries of the structure. For example, either the modal functions or the modified modal functions
of a beam always tend to be zero near any fixed boundary even though the dynamic loads on the beam may
not vanish. Hence, it is impossible to use any linear combination of those base functions to describe the non-
zero dynamic loads near the fixed boundary of a structure.

This study, therefore, explores the consistent spatial expression for distributed dynamic loads to cope with
the problem. In fact, there are a great variety of base functions, such as orthogonal polynomials, for this
purpose. The practice of authors indicates that the Legendre polynomials can offer a consistent spatial
expression to describe the distributed dynamic loads.
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3.3. Error evolution

The analysis of error evolution of the theory will follow the development of the reconstruction theory
addressed in Section 3.1.

Let Dw̄ðx̄i; t̄nÞ be the error in the experimental data w̄ðx̄i; t̄nÞ, Dō�r and Dḡw̄
r ðx̄iÞ be the errors corresponding to

ō�r and ḡw̄
r ðx̄iÞ obtained from w̄ðx̄i; t̄nÞ by using frequency analysis. As Eq. (21) is a truncated form, let D ~gw̄

r ðx̄iÞ

be the theoretical errors in ḡw̄
r ðx̄iÞ, and Dḡw̄

r ðx̄iÞ þ D ~gw̄
r ðx̄iÞ be the resultant errors in ḡw̄

r ðx̄iÞ. Therefore, Eq. (21) is
practically recast as

ḡw̄
r ðx̄iÞ þ Dḡw̄

r ðx̄iÞ þ D ~gw̄
r ðx̄iÞ ¼

X
m2Bm

c̄�m rSF�w̄ðm; rÞW
�
mðx̄iÞ; i ¼ 1; . . . ;Nm, (26)

where SF�w̄ðm; rÞ includes the error DSFw̄ðm; rÞ resulting from the errors of ō�r and ōm, W �
mðx̄iÞ carries with the

error of DW mðx̄iÞ resulting from the error of W mðx̄Þ. Eq. (26) can be recast in a matrix form as

~T ~c ¼ ~g, (27)

where

~T � ½SF�w̄ðm; rÞW
�
mðx̄iÞ�Nm�M ; ~c � fc̄

�
mrgM�1,

~g � fḡw̄
r ðx̄iÞ þ Dḡw̄

r ðx̄iÞ þ D ~gw̄
r ðx̄iÞgNm�1; i ¼ 1; . . . ;Nm; m 2 Bm. (28)

The Tikhonov regularization approach gives the regularized solution to Eq. (27)

~ca ¼ ð ~T
�
� ~Tþ a� IÞ�1 � ~T

�
� ~g, (29)

where the asterisk denotes conjugate transpose and a is the regularization parameter.
Suppose that the errors of ~T and ~g are bounded as

jj ~T� Tjjph; jj~g� gjjpd, (30)

where jjdjj represents a consistent norm. Then, the estimation of the error of ~ca is given by

jj~ca � cjjp
jjTþjj � jj~gjj

smin
� aþ jjTþjj � dþ

ffiffiffi
5
p

2
�

h

a
� ðd2 þ a� jjcjj2Þ1=2, (31)

where smin is the minimal eigenvalue of T�T, ~ca the regularized solution, and c the theoretical solution [23].
The matrix T in (31) can be replaced by ~T, with little loss of accuracy in practice.

Finally, according to the error theorem of the projection method [24], the error estimation of the solution of
Eq. (24) for ~a is given by

jj~a� ajjpjj~ca � cjj � jjRN jj þ jjRNAa� ajj, (32)

where RN � ðQMAjUN
Þ
�1QM : V ! UN � U , and QMAjUN

� ĀM�N .

4. Case studies

This section presents two case studies first to demonstrate how the ‘‘mode selection’’ well supports the
hypothesis of the optimal range for reconstructing distributed dynamic loads, and then gives another two case
studies to show the accuracy of the improved theory on reconstructing the distributed dynamic loads and the
effect near the fixed boundary.

All case studies in this section deal with a simply supported undamped Euler beam with length L ¼ 1m,
area of cross section A ¼ 1.2� 10�3m2, second moment of area of cross section I ¼ 3.6� 10�9m4, Young’s
modulus E ¼ 2� 1011Nm�2, and density r ¼ 7800 kgm�3. Other parameters in the case studies are the time
interval T ¼ 10 s, the sampling rate Dt ¼ 0.1ms, the number of measures, and the position of measurements
Nx ¼ 16, xi ¼ iL/17, i ¼ 1,y,16. Some dimensionless parameters are the time length T̄ 	 137:7680, the
sampling rate Dt̄ 	 1:4� 10�3, and the position of measurements x̄i ¼ i=17; i ¼ 1; . . . ; 16.

In the case studies, the dimensionless translational displacements of the beam were sampled from the
corresponding analytical solution, and only the steady-state responses were put into use since the components
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of free vibration could easily be picked out for an undamped beam. To simulate measured data, the uniformly
distributed random noises were added to the natural frequencies, mode shapes, and displacements, where an
additive noise level within the upper bound of ō1=1000 was applied to the dimensionless natural frequencies, a
multiplicative noise level within the upper bound of 1/50 to the dimensionless mode shapes, and a
multiplicative noise level within the upper bound of 1� 10�3 to the dimensionless translational displacements.
However, no noise was applied to the dimensionless mode shapes when they were used as orthogonal base
functions to reconstruct the distributed dynamic loads.

In mode selection, a threshold eSF was introduced. The modes satisfying the inequality
jSFw̄ðm; rÞj=maxn2DðjSFw̄ðn; rÞjÞX�SFðrÞ were selected and denoted as a set Dm for each dominate excitation
frequency, where D is a set including enough modes under consideration. Moreover, in all case studies, the
relative errors were defined as the absolute errors divided by the corresponding maximum.

The first and the second case studies are to demonstrate the effect of the ‘‘mode selection’’. In the first case
study, the Euler beam was assumed to be subject to a harmonic excitation

f̄ ðx̄; t̄Þ ¼
P

i¼1;5;6;7;10 f̄ iW iðx̄Þ sinðō� t̄Þ, where ō� ¼ ō3 þ 0:8 ō1, f̄ i ¼ 1; i ¼ 1; 5; 6; 7; 10. Fig. 2 shows how the

scale factors SFw̄ of the particular frequency varied with the order of the modes. The threshold eSF was
empirically tried twice. At first, when eSF was set to 1� 10�3, the set Dm ¼ 1y11 was selected. Fig. 3 shows
the corresponding reconstruction results and errors, and indicates that the set Dm of selected modes covered all
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spatial modes in the original load. Then, eSF was set to 1� 10�2, and the set Dm ¼ 1y6 was selected. In this
case, Dm did not cover Modes 7 and 10 in the original load. Fig. 4 shows the reconstruction results and errors.
Subfigures 4(a) and 4(b) give the comparison between the reconstructed load and the original load, whereas
subfigures 4(c) and 4(d) are the comparison between the reconstructed load and the corresponding modal
parts, namely, Modes 1, 5, and 6, in the original load. It is clear from Fig. 3(b) and 4(d) that the corresponding
modal parts in the original load are accurately reconstructed when eSF is larger or the range of Dm is narrower.
It is worthy to mention that the shapes of error curves are not important because they are influenced by the
random errors.

The second case is to reconstruct the distributed dynamic loads with two harmonic components in the form

f̄ ðx̄; t̄Þ ¼
P

i¼1;5;9 f̄ iW iðx̄Þ sinðō�1 t̄Þ þ
P

j¼2;6;13 f̄ jW jðx̄Þ sinðō�2 t̄Þ, where ō�1 ¼ ō3 þ 0:8 ō1, ō�2 ¼ ō8 þ 0:8 ō1, and

f̄ i ¼ f̄ j ¼ 1; i ¼ 1; 5; 9; j ¼ 2; 6; 13. Fig. 5 presents the variation of the scale factors SFw̄ of the two

frequencies with regard to the order of the modes. Similarly, the threshold eSF was first set to 1� 10�3,
Dmðō�1Þ ¼ 1 . . . 11 and Dmðō�2Þ ¼ 1 . . . 16 were selected, respectively. In this case, both sets Dmðō�1Þ and Dmðō�2Þ
covered all spatial modes in the dynamic loads. Fig. 6 shows the reconstruction of the two components in (a)
and (c), as well as the corresponding errors in (b) and (d). When the threshold eSF was set to 1� 10�2, then
Dmðō�1Þ ¼ 1 . . . 6 and Dmðō�2Þ ¼ 1 . . . 10 were selected. The corresponding results did not cover some spatial

modes in the distributed dynamic loads. Fig. 7 shows the reconstruction results and errors. Subfigures 7(a) and
(b) give the comparison between the reconstructed and original loads of the first harmonic component,
whereas subfigures 7(c) and (d) give the comparison between the reconstructed load and the corresponding
modal parts in the original load of the first harmonic component. Subfigures 7(e) and (f) are the comparison
between the reconstructed and original loads of the second harmonic component, whereas subfigures 7(g) and
(h) are the comparison between the reconstructed load and the corresponding modal parts of the original load
of the second harmonic component. The comparison of subfigures 7(d) and (h) to subfigures 6(b) and (d)
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indicates that a narrower range of selected modes enhances the reconstruction accuracy. However, it is not
true that the narrower the range of selected modes, the higher the accuracy of the reconstruction. Therefore,
an optimal range for ‘‘mode selection’’ is really expected.

In the above two cases fjnðx̄Þg were taken as the normalized natural mode functions fW mðx̄Þg, whereas in
the following two cases fjnðx̄Þg were taken as the normalized modified Legendre polynomials on interval (0, 1)
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so as to reconstruct the distributed dynamic loads, which may not vanish near the fixed boundary of the beam.
For the purpose of comparison, the number of polynomials fjnðx̄Þg remained the same as the number of
modes fW mðx̄Þg in the following two case studies.

In the third case study, the load to be reconstructed is a distributed harmonic excitation in the form

f̄ ðx̄; t̄Þ ¼ f̄ 0x̄ sinðō� t̄Þ, where ō� ¼ ō3 þ 0:8 ō1, f̄ 0 ¼ 1. Fig. 8 shows the scale factors SFw̄. In this case, the
threshold was set to eSF ¼ 1� 10�2, and the set Dm ¼ 1y6 was selected. Fig. 9 shows the comparison between
the reconstructed and original loads, as well as the errors. The figure indicates the high accuracy of the
distributed dynamic loads in the middle part of the beam and the acceptable errors of the distributed dynamic
loads near the fixed boundaries.

The final case study is to reconstruct the distributed dynamic loads in the form f̄ ðx̄; t̄Þ ¼ f̄ 1x̄ sinðō�1 t̄Þþ

f̄ 2x̄
3 sinðō�2 t̄Þ, where ō�1 ¼ ō1 þ 0:8 ō1, ō�2 ¼ ō3 þ 0:8 ō1, f̄ 1 ¼ f̄ 2 ¼ 1. Fig. 10 shows the scale factors SFw̄ in

this case. The threshold for ‘‘mode selection’’ was set to eSF ¼ 1� 10�2, and the sets Dmðō�1Þ ¼
1 . . . 3; Dmðō�2Þ ¼ 1 . . . 6 were determined. Fig. 11 shows the comparison between the reconstructed and

original loads, as well as the errors. Similarly, the reconstructed loads are relatively accurate in the
middle part of the beam, while the reconstruction errors near the fixed boundaries increase but are
acceptable.
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In the third and fourth cases, the reconstruction errors become profound near the fixed boundaries.
However, the errors near the fixed boundaries can be greatly decreased due to the application of the
‘‘consistent spatial expression’’ based on the series of Legendre polynomials. Nevertheless, the relatively large
reconstruction errors near the fixed boundary remain an open and tough problem.
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5. Concluding remarks

In this study, two scale factors, SFw̄ and SFā, are put forward first from a viewpoint of forward dynamics
for reconstructing the distributed dynamic loads on an Euler beam. Similar scale factors can naturally be
introduced in reconstructing the distributed dynamic loads on other kinds of structures. Based on the scale
factors, an idea of ‘‘mode selection’’ is proposed so as to reach the optimal range of frequency and spatial
modes for reconstructing the distributed dynamic loads.

In the previous studies of reconstructing the dynamic loads on a beam [11,14], the modified modal functions
were employed to describe the distributed dynamic loads in a linear combination of those functions. However,
the modal functions, including the modified modal functions, tend to vanish near the fixed boundary where the
dynamic loads may not be zero. Therefore, it is better to use ‘‘the consistent spatial expression’’ for the
distributed dynamic loads to be reconstructed.

Based on the ideas of ‘‘mode selection’’ and ‘‘consistent spatial expression for distributed dynamic loads’’,
an improved theory is addressed to reconstruct the distributed dynamic loads on an Euler beam. The
numerical simulations show that the accuracy of reconstructed loads, even near the fixed boundaries, can be
greatly increased by using ‘‘mode selection’’ and ‘‘consistent spatial expression for distributed dynamic loads’’.

There are still some open problems for further investigation. For instance, it is worthwhile to give the
threshold eSF analytically. Though the reconstruction accuracy near the fixed boundaries is greatly enhanced,
it is much worse than the accuracy in the middle interval.
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